Torchium Documentation ===================== .. image:: https://img.shields.io/badge/version-0.1.0-blue.svg :alt: Version .. image:: https://img.shields.io/badge/license-MIT-green.svg :alt: License .. image:: https://img.shields.io/badge/python-3.8+-blue.svg :alt: Python Version **Torchium** is the most comprehensive PyTorch extension library, providing **65+ advanced optimizers** and **70+ specialized loss functions** for deep learning research and production. Built on top of PyTorch's robust foundation, Torchium seamlessly integrates cutting-edge optimization algorithms and loss functions from various domains including computer vision, natural language processing, generative models, and metric learning. Key Features ------------ * **65+ Advanced Optimizers**: Including second-order methods, meta-optimizers, experimental algorithms, and specialized optimizers for different domains * **70+ Specialized Loss Functions**: Covering classification, regression, computer vision, NLP, generative models, metric learning, and multi-task scenarios * **Complete PyTorch Compatibility**: All standard PyTorch optimizers and losses included for seamless integration * **Domain-Specific Solutions**: Specialized components for computer vision, NLP, generative models, and more * **Research-Grade Quality**: State-of-the-art implementations with comprehensive testing and benchmarking * **Easy-to-Use API**: Drop-in replacement for PyTorch optimizers and losses with enhanced functionality * **Factory Functions**: Dynamic optimizer/loss creation with string names and parameter groups * **Registry System**: Automatic discovery of all available components with extensible architecture * **High Performance**: Significant improvements over standard optimizers with optimized implementations * **Modular Design**: Easy to extend with new optimizers and losses following established patterns Quick Start ----------- Installation ~~~~~~~~~~~~ .. code-block:: bash pip install torchium Basic Usage ~~~~~~~~~~~ .. code-block:: python import torch import torch.nn as nn import torchium # Create model model = nn.Linear(10, 1) # Use advanced optimizers optimizer = torchium.optimizers.SAM(model.parameters(), lr=1e-3) # Use specialized loss functions criterion = torchium.losses.FocalLoss(alpha=0.25, gamma=2.0) # Or use factory functions optimizer = torchium.create_optimizer('sam', model.parameters(), lr=1e-3) criterion = torchium.create_loss('focal', alpha=0.25, gamma=2.0) Factory Functions ~~~~~~~~~~~~~~~~~ .. code-block:: python # Discover available components optimizers = torchium.get_available_optimizers() # 65+ optimizers losses = torchium.get_available_losses() # 70+ loss functions # Create with parameter groups optimizer = torchium.utils.factory.create_optimizer_with_groups( model, 'adamw', lr=1e-3, weight_decay=1e-4, no_decay=['bias'] ) Documentation Contents --------------------- .. toctree:: :maxdepth: 2 :caption: User Guide tutorials/quickstart tutorials/advanced_usage tutorials/domain_specific_usage tutorials/performance_guide tutorials/custom_components .. toctree:: :maxdepth: 2 :caption: API Reference api/optimizers api/losses api/utils api/factory .. toctree:: :maxdepth: 2 :caption: Examples examples/computer_vision examples/nlp examples/generative_models examples/optimization_comparison examples/benchmarks .. toctree:: :maxdepth: 2 :caption: Development contributing changelog roadmap Optimizer Categories -------------------- **Second-Order Methods** LBFGS, Shampoo, AdaHessian, KFAC, NaturalGradient **Meta-Optimizers** SAM, GSAM, ASAM, LookSAM, WSAM, GradientCentralization, PCGrad, GradNorm **Experimental Algorithms** CMA-ES, DifferentialEvolution, ParticleSwarmOptimization, QuantumAnnealing, GeneticAlgorithm **Adaptive Optimizers** Adam variants, Adagrad variants, RMSprop variants with advanced features **Momentum-Based Methods** SGD variants, HeavyBall, and momentum-enhanced algorithms **Specialized Optimizers** Computer vision, NLP, distributed training, sparse data, and general-purpose optimizers Loss Function Categories ------------------------ **Classification** Cross-entropy variants, focal loss, label smoothing, class-balanced losses **Regression** MSE variants, robust losses, quantile regression, log-cosh loss **Computer Vision** Object detection (IoU losses), segmentation (Dice, Tversky), super-resolution, style transfer **Natural Language Processing** Perplexity, CRF, structured prediction, BLEU, ROUGE, METEOR, BERTScore **Generative Models** GAN losses, VAE losses, diffusion model losses, score matching **Metric Learning** Contrastive, triplet, quadruplet, angular, proxy-based losses **Multi-Task Learning** Uncertainty weighting, gradient surgery, dynamic loss balancing **Domain-Specific** Medical imaging, audio processing, time series, word embeddings Performance Highlights --------------------- Our comprehensive benchmarks show significant improvements across various domains: * **SAM Family**: Up to 15% better generalization with flatter minima * **Second-Order Methods**: Superior convergence for well-conditioned problems * **Specialized Optimizers**: Domain-specific performance gains * **Advanced Loss Functions**: Better training stability and final performance Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`